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REVIEW ARTICLE
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Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS).
Here we review insulin, which has at least one plausible mechanism for slowing ALS progression. However, pre-clinical
studies are limited and there have been no trials in PALS yet. Insulin use in patients without a metabolic need may
cause very serious and potentially lethal side effects. While further studies to evaluate potential benefits may be war-
ranted, at this time we cannot endorse insulin treatment to slow ALS progression.

Keywords: Amyotrophic lateral sclerosis (ALS), insulin, metabolism, off-label treatment

ALSUntangled reviews alternative and off-label
ALS treatments on behalf of people living with
amyotrophic lateral sclerosis (PALS). Here we
review insulin, for which we had 415 requests (1).

Overview

Hormones are chemical signals produced by speci-
alized organs and tissues of the body in response to

environmental or developmental changes (2). Upon
release into the blood, hormones are transported to
their target organs where they bind to receptors on
the surface or interior of target cells. Insulin is a
large, negatively-charged, polypeptide hormone that
is produced by specialized beta-cells of the endo-
crine pancreas in response to fluctuations of glucose
concentration in the blood (3). The beta-cells pack-
age and store insulin in granules and release the
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stored insulin into the bloodstream in response to
certain stimuli, such as increased glucose levels in
the blood (3). In addition, the nervous system
inhibits insulin secretion from beta-cells through
sympathetic stimulation and enhances secretion
through parasympathetic stimulation (3).

As a large, charged molecule, insulin cannot
enter the target cell directly but needs to bind to a
special receptor on the cell surface to influence the
target cell. The insulin receptor is a member of the
receptor tyrosine protein kinase (RTK) family.
When insulin binds to the insulin receptor a cas-
cade of events unfolds in the interior of the cell,
leading to pleotropic effects downstream in cellular
signaling pathways (2).

In skeletal muscle and adipose cells, insulin
binding promotes glucose uptake from the blood by
translocating the GLUT4 glucose receptor to the
surface of the cells (4). In adipose tissue, this insu-
lin-induced glucose uptake contributes to fatty acid
and triglyceride synthesis (4). Insulin also causes
the liver to store lipids by stimulating triglyceride
synthesis and inhibiting triglyceride breakdown (4).

Understanding insulin’s function in the central
nervous system is an area of significant interest.
Unlike in muscle and adipose tissue, glucose
uptake in brain is largely due to insulin independ-
ent mechanisms. Nevertheless, the insulin receptor
is expressed throughout the brain and may influ-
ence synaptic transmission, axon growth and neu-
roplasticity, protein synthesis, gene transcription,
and neuronal polarity (4). In the past, ALS was
often thought of as a disease that only affected
motor neurons in the brain and spinal cord. As
further understanding of the disease has evolved,
metabolic abnormalities including alterations in
glucose homeostasis and impaired insulin signal-
ing, have been recognized in PALS (5–9).

Mechanisms

Glucose Metabolism

While abnormalities of glucose metabolism and
impaired insulin signaling have been reported in
PALS (5–11), it is uncertain whether these are con-
tributing to the pathophysiology of the disease or are
a result of the disease. Onset of Type 2 diabetes later
in life (after age 50) has been associated with a lower
risk of developing ALS and a delayed ALS onset
(reviewed in 9). On the other hand, onset of Type 1
and possibly Type 2 diabetes earlier in life has been
associated with a higher risk of ALS (reviewed in 9).
No consistent effect of diabetes on progression or
prognosis has yet been demonstrated (9). Compared
to healthy controls, familial and sporadic PALS have
been shown to have abnormalities in regional brain
glucose metabolism on FDG PET (12); however,
some areas appear hypermetabolic whereas others
appear hypometabolic and these differ depending on

the presence of C9ORF72 mutations and/or demen-
tia (12). In a recent population-based case-control
study, 2 antidiabetic drugs were associated with a
significantly lower risk of developing ALS: metformin
and glucagon (13). Insulin was apparently not exam-
ined in this study.

Connexin-43 (CX-43)

Astrocytes are specialized central nervous system
cells that protect neurons (14). Astrocytic proc-
esses line the walls of the capillaries and form the
blood brain barrier. Connexin 43 (Cx43) is an
astrocyte protein that forms gap junction pores
which, when open, may allow the transfer of toxic
substances from astrocytes to motor neurons (15).
Cx43 levels are elevated in the G93A mSOD1
mouse model of ALS (16), and survival in this
model can be increased by astrocyte-specific Cx43
knockout (16). Furthermore, tonabersat, a Cx43
blocking drug, preserves motor neurons in the
G93A mutant SOD1 mouse model of ALS (16).
In silico modeling has recently shown that insulin
could also bind to and block this channel (17).

Since insulin may be able to block the Cx43
pore, a target that is theoretically involved in ALS
progression, we assign a Table of Evidence (TOE)
“mechanisms” grade of C (Table 1).

Pre-Clinical Studies/Animal Models

In a Drosophila fruit fly model of C9ORF72 ALS,
one group demonstrated that insulin receptor
ligands were downregulated (18). Treatment with
insulin prolonged the flies’ survival (18). This was a
well-designed study, but we have not found evi-
dence of anyone attempting to replicate it. It is
unclear how well findings in this model will trans-
late into PALS, especially since most do not have
repeat expansions. We found no pre-clinical studies
of insulin treatment in any other model of ALS.

Based upon this single study in a C9ORF72 fly
model of ALS, we assign a TOE “pre-clinical”
grade of B.

Table 1. Table of evidence for insulin as an ALS treatment.

Category Grade Explanation

Mechanism C Insulin can possibly act on at least one
biological mechanism (Cx43) that is
theoretically relevant in ALS
progression

Pre-Clinical B Insulin treatment prolonged survival in a
single well-designed study using a
C9ORF72 mutant fly model of ALS.
This has not been independently
replicated.

Cases U No known case reports to date.
Trials U No known trials to date
Risks F Insulin treatment can have frequent and

severe side effects
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Data in PALS

We found no case reports or clinical trials using
insulin as a treatment for PALS. Thus, we assign
TOE “cases” and “trials” grades of U (Table 1).

Of interest, we found a small trial of another
anti-diabetic called pioglitazone in PALS (19). This
trial showed no benefits on any measure of ALS pro-
gression (19). Since insulin may have mechanisms
for slowing ALS that are independent of its effects
on glucose, this trial does not rule out a possible
benefit from insulin. There is also an ongoing trial
(https://www.clinicaltrials.gov/study/NCT04220021?
cond=ALS&term=metformin&rank=1_) of another
anti-diabetic drug called metformin for patients
with C9ORF72 ALS. The rationale for using this
drug is based on its specific effects on toxic proteins
caused by this genetic defect. Thus, this trial’s
results will not shed light on insulin’s promise as an
ALS therapy.

Also of interest, there have been several small
trials of thyrotropin-releasing hormone (TRH) in
PALS (reviewed in reference 19). TRH ultimately
stimulates the release of other hormones including
one called T3 which increases insulin synthesis and
improves insulin sensitivity (20, 21). The fact that
TRH administration produced no consistent, long-
lasting benefits for PALS argues somewhat against
the ability of insulin to slow ALS progression.

Finally, there have been studies on insulin-like
growth factor 1 (IGF-1) in PALS. IGF-1 is similar
in molecular structure to insulin, and though it
binds to different receptors, it has overlapping
effects on glucose lowering and improves insulin
sensitivity and carbohydrate homeostasis (22).
Some studies have shown inverse correlations
between serum IGF-1 levels and ALS progression
(23). But three trials of IGF-1 have been per-
formed in PALS, with a meta-analysis finding no
dramatic or consistent benefits on progression
(24). There were methodological flaws in these tri-
als that may limit conclusions (24), but these are
certainly not supportive of the ability of insulin to
slow ALS progression.

Dosing, Risks and Costs

Insulin is available in many formulations for treat-
ment of diabetes including short-acting subcutane-
ous formulations, long-acting subcutaneous
formulations, and a rapidly acting inhaled formula-
tion (see Table 2, reference 25.26). Dosing varies
based on the needs of each patient.

The risks of insulin therapy in patients with dia-
betes are primarily hypoglycemia, but hypokalemia,
weight gain, anaphylaxis, myalgia, itch, and rash
may also result (25). Symptoms of hypoglycemia
may include sweating, weakness, tachycardia, pares-
thesia, irritability, confusion, transient focal neuro-
logical defects, seizure, loss of consciousness (27)

and death. There are additional risks of inhaled
insulin due to the route of delivery. These include a
possible decline in pulmonary function (i.e., FEV1),
cough (reported in up to 44% of patients), and pos-
sible increase in lung cancer risk and mortality (26).
Inhaled insulin risk is thought to be higher in
patients with asthma or chronic obstructive lung dis-
ease (26). Due to the possibility of inhaled insulin
worsening lung function, it could accelerate respira-
tory failure in PALS.

Based upon the high frequency of potentially
serious side effects of insulin therapy, we assign a
TOE “risks” grade of F (Table 1).

Over 9 million people in America take insulin.
The average cash price per unit of insulin in 2023
is approximately $0.30, up from $0.22 in 2014
(28). However, the approval of generic and biosi-
milar insulin may lead to an overall decrease in
price (28). The prices of insulin also vary by for-
mulation often with the newer formulations costing
more. For example, inhaled insulin can be up to
20 times more costly per unit compared to fast
acting subcutaneous alternatives (26). Therefore,
costs are variable and can be quite significant.

Conclusions

Insulin treatment for ALS is an intriguing area for
future research. However, the risks of insulin
administration are significant and potentially
lethal. Currently, there is no clinical evidence to
support its use in PALS. Therefore, we cannot
endorse insulin as way to slow, stop or reverse
ALS progression at this time.
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